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Abstract
We present a simple method for rendering directly from compressed
textures in hardware and software rendering systems. Textures are
compressed using a vector quantization (VQ) method. The advan-
tage of VQ over other compression techniques is that textures can
be decompressed quickly during rendering. The drawback of us-
ing lossy compression schemes such as VQ for textures is that such
methods introduce errors into the textures. We discuss techniques
for controlling these losses. We also describe an extension to the
basic VQ technique for compressing mipmaps. We have observed
compression rates of up to 35 : 1, with minimal loss in visual qual-
ity and a small impact on rendering time. The simplicity of our tech-
nique lends itself to an efficient hardware implementation.
CR categories: I.3.7 [Computer Graphics]: 3D Graphics and Real-
ism - Texture; I.4.2 [Image Processing]: Compression - Coding

1 Introduction
Texture mapping is employed on high-end graphics workstations
and rendering systems to increase the visual complexity of a scene
without increasing its geometric complexity[7]. Texture mapping
allows a rendering system to map an image onto simple scene ge-
ometry to make objects look much more complex or realistic than
the underlying geometry. Recently, texture mapping hardware has
become available on lower-end workstations, personal computers,
and home game systems.

One of the costs of texture mapping is that the texture images of-
ten require a large amount of memory. For a particular scene, the
memory required by the textures is dependenton the number of tex-
tures and the size of each texture. In some cases, the size of the tex-
tures may exceed the size of the scene geometry[3].

In hardware systems supporting real–time texture mapping, tex-
tures are generally placed in dedicated memory that can be accessed
quickly as pixels are generated. In some hardware systems, tex-
tures are replicated in memory to facilitate fast parallel access [1].
Because texture memory is a limited resource in these systems, it
can be consumed quickly. Although memory concerns are less se-
vere for software rendering systems since textures are stored in main
memory, there are advantagesto conserving texture memory. In par-
ticular, using less memory for textures may yield caching benefits,
especially in cases where the textures do not fit in main memory and
cause the machine to swap.
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One way to alleviate these memory limitations is to store com-
pressed representations of textures in memory. A modified renderer
could then render directly from this compressed representation. In
this paper we examine the issues involved in rendering from com-
pressed texture maps and propose a scheme for compressing tex-
tures using vector quantization (VQ)[4]. We also describe an ex-
tension of our basic VQ technique for compressing mipmaps. We
show that by using VQ compression, we can achieve compression
rates of up to 35 : 1 with little loss in the visual quality of the ren-
dered scene. We observe a 2 to 20 percent impact on rendering time
using a software renderer that renders from the compressed format.
However, the technique is so simple that incorporating it into hard-
ware should have very little impact on rendering performance.

2 Choosing a Compression Scheme
There are many compression techniques for images, most of which
are geared towards compression for storage or transmission. In
choosing a compression scheme for texture mapping there are sev-
eral issues to consider. In this section we discuss these issues and
we show how VQ compression addresses each of them.

Decoding Speed. In order to render directly from the com-
pressed representation, an essential feature of the compression
scheme is fast decompression so that the time necessary to access a
single texture pixel is not severely impacted. With VQ, decompres-
sion is performed through table lookups and is very fast. A trans-
form coding scheme such as JPEG[10] is more expensive because
extracting the value of a texture pixel would require an expensive
inverse Discrete Cosine Transform (DCT) computation.

Random Access. It is difficult to know in advance how a ren-
derer will accessa texture. Thus, texture compressionschemesmust
provide fast random access to pixels in the texture. For compres-
sion schemes like JPEG or run length coding which produce vari-
able rate codes, extracting a texture pixel might require decompress-
ing a large portion of the texture. Unlike variable rate codes, fixed-
rate VQ represents each block of texture pixels with a fixed number
of bits. Since the number of bits is known in advance, indexing any
particular pixel is fast and easy.

Compression Rate and Visual Quality. While lossless com-
pression schemes, such as Lempel–Ziv compression[12], will per-
fectly preserve a texture, they achieve much lower compression
rates than lossy schemes. However, using a lossy compression
scheme introduces errors into the textures. With VQ, there are many
parameters that can be used to control these errors. A major differ-
ence between images and textures is that images are viewed on their
own, while textures are viewed as part of a scene with orientation
and size dependent on the mapping from scene surface to texture.
Thus, for image compression algorithms, the visual quality of the
compressed image is most important, while for texture compression
algorithms, the visual quality of the rendered scene, not the texture
map, is most important.

Encoding Speed. Experimenting with the compression rate ver-
sus visual quality tradeoff can be difficult if encoding is slow. Al-
though optimal VQ encoding can be a time-consuming process, fast
sub-optimal encoding algorithms exist. Texture compression, how-
ever, is an asymmetric application of compression, since decoding
speed is essential while encoding speed is useful but not necessary.
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Figure 1: Accessing a pixel from a compressed texture.

3 Rendering
We have chosen VQ as our texture compression algorithm because
it addresses all of the issues presented in the previous section, and in
particular it supports fast decompression. When using VQ, we con-
sider a texture as a set of pixel blocks. VQ attempts to characterize
this set of blocks by a smaller set of representative blocks called a
codebook. A lossy–compressedversion of the original image is rep-
resented as a set of indices into this codebook, with one index per
block of pixels. This set of indices is called the index map. The tex-
ture can be decompressed by looking up each block of pixels in the
codebook via its index. In [9], such an indexed-lookup technique is
used to page in uncompressed textures from disk on demand. Color
quantization algorithms such as the Median Cut Algorithm[6] use
this same indexed-lookup technique for representing 24 bit images
with 8 bits per pixel. A method for compressing 3D volumes us-
ing VQ and a fast technique for volume rendering directly from this
compressed format is presented in [8]. While we will describe ex-
actly how to encode textures using VQ in section 4, we first show
how to render directly from VQ compressed textures.

The rendering algorithm is outlined in the following algorithm.
Assuming that the (s; t) texture coordinate has already been con-
verted to an integral (i; j) location within the texture, we:

1. Determine in which block B pixel (i; j) lies, and the offset of
pixel (i; j) within that block.

2. Lookup the index associated with block B to determine the
corresponding codeword in the codebook.

3. Lookup the pixel (i; j) within this codeword block.

The three step process is shown pictorially in figure 1. Step 1
is easily implemented with fast bit shift and logical operators when
texture and block sizes are a power of two. To achieve the highest
compression rate we store the index map in a packed representation.
Therefore, in step 2, two memory accesses and a few simple bit op-
erations may be required if the size of each index is such that the in-
dices do not fall on word boundaries. However, for word aligned in-
dices, the appropriate index can be determined with a single lookup.

4 Encoding
The most critical part of encoding a texture using VQ is designing
the codebook. The Generalized Lloyd Algorithm (GLA)[4] is one
technique for generating a codebook. It is an iterative clustering al-
gorithm which yields a locally optimal codebook for a given set of
pixel blocks, called the training set of vectors.We generally use all
the blocks in the original texture as our training set. The algorithm
begins by selecting a set of potential codewords from the training
set and then iterates on the following steps. Each training vector is
grouped with the nearest codeword, based on some distortion mea-
sure such as Euclidean distance. The centroids of the groups are
chosen as the new set of codewords, and the process repeats until
the set of codewords converges.
Although this “Full Search” approach is locally optimal, gener-
ating the codebook is computationally expensive. A faster tech-
nique for producing the codebook is Tree Structured VQ[4]. This
approach designs the codebook recursively, organizing the code-
book as a binary tree. The first step is to find the centroid of the set
of training vectors, which becomes the root level codeword. To find
the children of this root, the centroid and a perturbed centroid are
chosenas initial child codewords. The GLA is then used to converge
on the locally optimal codewords for this first level in the tree. The
training vectors are split into two groups based on these locally opti-
mal codewords and the algorithm recurses on each of these subtrees.
Note that once the child codewords have been chosen, the training
vectors are permanently grouped with the nearest codeword. Since
codewords cannot jump across subtrees, this approach is not guar-
anteed to produce the locally optimal codebook, but is substantially
faster than Full Search VQ [4].

Once the codebook has been generated we encode a texture by
mapping each block of pixels to the nearest codeword. With Full
Search VQ we exhaustively search for the nearest codeword. With
Tree Structured VQ, we can traverse the codebook tree always tak-
ing the path with the closest codeword. Thus, both codebook gener-
ation and texture encoding are faster with Tree Structured VQ than
with Full Search VQ. We use Tree Structured VQ for quick experi-
mentation, and Full Search VQ for generating final codebooks.

5 Texture Encoding Tradeoffs
In generating the VQ encoding for a texture we have control over
several parameters that can be used to tradeoff compression rate for
the quality of the compressed texture. This tradeoff must be con-
sidered carefully when encoding textures for a given scene. In this
section we describe some of the parameters in VQ encoding that af-
fect this tradeoff.

We have many choices on how to partition the image data into
training vectors when designing a VQ codebook. The size of a vec-
tor is dictated by the dimensions of the block of pixels being coded
and the number of color channels used to define the color of each
pixel. We can either design a codebook for each color channel sep-
arately, or treat components of a color as a single value and code
them together. We use the latter approach, which results in a higher
compression rate since only one codebook and index map is used,
instead of one codebook and index map per color channel.

The size of the codebook influences the compression rate in two
ways. A larger codebook will lower the compression rate by in-
creasing the size of the compressed representation. A larger code-
book also means that the indices into the codebookwill require more
bits, increasing the size of the index map. However, a larger code-
book will contain more of the representative blocks giving us better
quality compressed textures. The size of the pixel block used in tex-
ture encoding also has a large effect on the overall compression rate.
For example, if we use 4� 4 blocks when encoding a texture, each
RGB pixel block contains 4 � 4 � 3 = 48 bytes. With a 256 en-
try codebook, we use a 1 byte index to represent each pixel block,
yielding a base compression rate of 48 : 1. The overall compression
rate is reduced from the base rate by the storage requirements of the
codebook. For example, when encoding a 512� 512 image using a
256 entry codebook, the overall compression rate falls to 27:4 : 1.
With 2 � 2 blocks the base compression rate is only 12 : 1. How-
ever, there are fewer possible 2 � 2 blocks than 4 � 4 blocks, and
therefore, 2� 2 codebooks produce better quality compressed tex-
tures than 4�4 codebooks. Similarly we could use larger blocksizes
to gain higher compression rates for worse quality.

To achieve additional compression, we can encode three channel
RGB textures in the 4:1:1 YUV format, commonly used in video
standards. This format stores the color channels U and V decimated
by a factor 2 both horizontally and vertically, and the luminance
channel Y at full resolution. Converting from this YUV representa-
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Figure 2: The encoding of three consecutive levels of a mipmap.

tion back to the RGB representation used by most renderers requires
only multiplication by a constant 3x3 matrix, which is easily imple-
mented in hardware.

We can also increase the compression rate by amortizing the cost
of a larger codebook over several textures. We train a codebook on
multiple textures to determine one codebook for all of them. A sin-
gle codebook may be enough to characterize all of the textures in a
scene. If one codebook results in too many compression artifacts,
we can group the textures and design one codebook per group.

6 Mipmapping
An effective way to resample textures is by using a mipmap[11]. A
mipmap stores a texture as an image pyramid, and is designed to al-
low efficient filtering of a texture. Each mipmap level stores a fil-
tered version of the texture corresponding to a particular image pixel
to texture pixel ratio. To apply a mipmapped texture, we compute
texture coordinates (s; t) and an approximation to d, the image pixel
to texture pixel ratio. Because these values are not integral in most
cases, trilinear interpolation is used to determine the texture value.

One way to compress mipmaps would be to compress each
mipmap level individually. However, we can take advantage of the
correlation between successivelayers of a mipmap by encoding sev-
eral levels at once, generating one codebook as well as one index
map for the group of levels. This allows us to gain higher compres-
sion rates in compressing mipmaps.

To compress a mipmap, we begin by compressing the original
texture using 4�4 blocks. Given the codebook for this first mipmap
level, we can form a codebook for the next level by averaging each
4� 4 codeword down to a 2� 2 codeword. Similarly, a codebook
for the third level of the mipmap can be formed by averaging these
2 � 2 codewords down to single pixel codewords. Instead of stor-
ing three codebooks, we can combine them into one codebook con-
taining extended codewords. Each extended codeword is formed by
concatenating the 4� 4 codeword with the corresponding subsam-
pled 2 � 2 and 1 � 1 codewords. Note that the index maps for the
three levels are identical, and therefore can be shared. The encod-
ing of three mipmap levels is shown pictorially in figure 2. The full
mipmap can be formed by repeating this process for every group of
three levels, creating a separate index map and codebook for every
group of three. In practice, once the size of a mipmap level is less
than 32 � 32 pixels, we store it uncompressed.

For the trilinear interpolation, each (s; t; d) mipmap texture co-
ordinate is converted to the eight nearest integral (i; j; L) mipmap
locations in two adjacent levels of the mipmap. To access a pixel
in a given level L we first determine the group of levels to which L
Trial Overall Rate MSE
RGB Files: All: 4096, 4� 4, RGB 11.8:1 12.12
RGB Files: All: 4096, 4� 4, YUV 15.3:1 16.17
RGB Files: Signs, Roads: 256, 2� 2, YUV 12:7:1 11.27

Other: 4096, 4� 4, YUV

RGB Files: Signs: 256, 2� 2, YUV 24.5:1 16.19
Roads, Other: 256, 4� 4, YUV

Table 3: For each of these trials, one channel textures were com-
pressed using 256, 2�2 codewords, and RGBA textures were com-
pressed using 256, 2� 2 codewords.

belongs. The texture coordinates are then used to look up the index
into the codebook from the index map for that group of levels. The
level number determines in which part of the extendedcodeword the
desired pixel is stored. Finally, the block offsets of the pixel are used
to address the desired pixel.

The drawback of our mipmap encoding approach is that the qual-
ity of the compressed level 1 and level 2 mipmaps can not be any
better than the quality of the compressed level 0 mipmap, even
though smaller sized codewords are used for levels 1 and 2. Inter-
polative VQ[5] [4] is an alternative technique for compressing im-
age pyramids such as mipmaps. The general approach is to perform
VQ on a subsampled image, decompress the image, interpolate it up
to the next larger image size and VQ the difference between the in-
terpolated image and the original. The benefits of this approach are
that it takes advantage of the correlation between successive levels
in the mipmap during encoding, and unlike the scheme we propose,
the quality of each compressed mipmap level is somewhat indepen-
dent of the quality of other mipmap levels. However, Interpolative
VQ also requires a separate codebook per mipmap level, and re-
trieving a pixel from a particular mipmap level requires building up
the the pixel value from the most subsampled mipmap level up to
the desired level, accessing a codeword from each mipmap level in
between. Although we have not performed direct comparisons to
our encoding scheme, these two drawbacks make Interpolative VQ
unattractive for fast texture mapping applications and we do not to
use it in encoding mipmaps.

7 Results
We have evaluated our proposed VQ texture compression method
by rendering texture mapped scenes using two different renderers:
IRIS Performer and a custom software scan converter. We present
the results for two scenes in this section. Since we cannot directly
load our compressed format into Performer, we compress and de-
compress each texture in a preprocessing step that introduces com-
pression errors into the textures. While we cannot directly compare
rendering speed we can compare the visual quality of the rendered
images. We also use a software scan converter to render textures di-
rectly from our compressed format. This allows us to compare both
rendering times for, and the visual quality of, images rendered with
and without compressed textures. We experiment with several of
the VQ encoding parameters discussed in section 5 and report the
compression rates for each of the scenes.

The Performer Town is a fully texture mapped virtual environ-
ment, containing 85 textures which require a total of 5 MB when un-
compressed. Although most of the textures are three channel RGB
textures, there are 14 one channel intensity textures and 7 four chan-
nel RGBA textures. We compress the intensity textures with a sin-
gle codebook containing 256 codewords and a blocksize of 2 � 2.
We generate a separate codebookfor the RGBA textures again using
256 2� 2 codewords. We vary several parameters in compressing
the RGB textures and the overall compression results are given in
table 3. The mean squared error (MSE) for a color channel is com-
puted as the sum of squared differences between original frame pix-
els and corresponding pixels from the compressed texture frame, di-



Texturing used Filter Rate Avg. MSE
Wood,Marble: 128, 4� 4 YUV Point 34.7:1 34.7
Top: 128, 2� 2 YUV

Wood,Marble: 256, 4� 4 YUV Point 28.3:1 19.1
Top: 256, 2� 2 YUV

all: 256, 2� 2, YUV Point 11.5:1 37.9
separate: 256, RGB Mipmap 17.6:1 14.2
separate: 1024, RGB Mipmap 8.0:1 13.3

Table 4: Compression rates and average MSE for 50 frames of the
Topspin animation. As shown in plate 2, the scene contains three
textures: Wood, Marble and Top.

Sampling Textures used Rendering Time Increase
Point Uncompressed 21.0 sec

VQ w/8 bit index 21.4 sec 1.7%
VQ w/12 bit index 23.0 sec 9.6%

Mipmap Uncompressed 65.4 sec
VQ w/8 bit index 69.5 sec 6.3%
VQ w/12 bit index 78.3 sec 19.7%

Table 5: Rendering time for the Topspin animation for uncom-
pressed and compressed textures using 8 and 12 bit indices. Twenty
frames were rendered at 400� 400 on a 132MHz MIPS R4600.

vided by the number of pixels in the frame. The MSE results we
present are calculated for the frame shown in plate 1 and are aver-
aged across the three RGB color channels.

The first two rows of table 3 present the results of using a sin-
gle codebook across all the RGB textures. Using 4� 4 blocks, cer-
tain textures such as signs, billboards and roads contain some no-
ticeable artifacts. Based on this observation we separated the RGB
textures into three groups: signs and billboards, roads, and all oth-
ers, using a separate codebook for each group. This allows us to use
smaller 2�2 blocks for the signs and roads, while using 4�4 blocks
for the other textures. As shown in table 3, we can achieve slightly
higher compression rates with a smaller average MSE using sepa-
rate codebooks (see rows 1 and 3). Using separate codebooks, even
at a compression rate of 24.5:1, the rendered scenes must be exam-
ined closely to see the artifacts in the textures, as shown in plate 1.

The Topspin animation contains three texture maps requiring 1.4
MB when uncompressed. We render this animation using a software
scan converter. Some compression rates for this animation using
point mapped and mipmapped textures are given in table 4. Note
that the MSE numbers presented in this table are averagedacross the
50 frames in the Topspin animation. We do not vary the codebook
blocksize for mipmaps, since this is fixed by our three level code-
book architecture. A separate compressed mipmap is generated for
each of the three textures in the Topspin animation.

A frame from this animation rendered with point sampled tex-
tures is shown in plate 2, while the textures are shown in plate 3. The
frame is almost free of artifacts, although there is some blockiness
in the foreground Marble texture. The Wood and Marble textures
in plate 3 have been cropped and enlarged to make the compression
artifacts more visible.

The timing results for the Topspin animation are presented in ta-
ble 5. Index maps with 12 bit indices take more time to decode than
those with 8 bit indices because two lookups and bit manipulations
are required to extract each index instead of a single lookup. Al-
though these timing results indicate the computational overhead of
rendering from VQ compressed textures in a software renderer, they
do not represent a situation in which texture compression would be
used. In a software renderer textures would only be compressed if
the uncompressed textures surpass the main memory limit and cause
the machine to swap. In such a situation, compression would alle-
viate the swapping, thereby drastically improving rendering times.
In a hardware implementation of this scheme, specialized address-
ing logic could be built to reduce the the penalty caused by irregular
index sizes.

8 Conclusions
We have presented a method for rendering directly from VQ com-
pressed texture maps. The advantage of using VQ over other com-
pression schemes is that it addresses many of the issues involved
in choosing a compression scheme for texture mapping. In partic-
ular, decompression is inexpensive. Even though VQ compression
is lossy, we have been able to achieve compression rates of up to
35 : 1 with few visible artifacts in the rendered images.

There are several directions in which this work may be extended.
Designing codebookscurrently requires some experimentation with
the various VQ encoding parameters. While an automatic method
for designing “optimal” codebooks would be useful, designing a
measure of optimality is difficult. There has been some work on de-
signing perceptual distortion measures to minimize such distortions
in compressed images [2]. For texture mapping however, distortion
in the rendered scene, not the compressed textures, must be mini-
mized, so the distortion measure must use information about how
the textures will be mapped into the scene. It may be possible to
use a hint driven approach that allows the application designer to
provide hints about characteristics like which textures are similar to
one another, or which textures are more or less important to pre-
serve perfectly. The VQ compression approach naturally extends
to other classes of texture maps such as bump maps, displacement
maps and environment maps. Each of these classes of textures has
some unique filtering or access issues and although our preliminary
results indicate that VQ compression works well for them, we are
studying them in more detail.

Using VQ compressed textures in a rendering system is a vi-
able method for reducing the memory overhead of texture mapping.
Such compression is ideal for rendering systems that use specialized
texture memory and aim for real-time performance. It will allow
lower-end systems such as PCs and home game systems to achieve
greater graphical realism through the use of more complex textures.
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